Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(1)

Friedrich-Alexander- Ilnwersuat
Erlangen-Niirnberg =

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Elementary Data Structures

Overview on simple data structures
for representing dynamic sets of data records

B Main operations on these data structures are

Insertion and deletion of an element

searching for an element

finding the minimum or maximum element

finding the successor or the predecessor of an element
And similar operations ...

B These data structures are often implemented
using dynamically allocated objects and pointers

Data Structures and Algorithms

(132)

Elementary Data Structures

Typical Examples of Elementary Data Structures

Array

Stack
Queue
Linked List
Tree

Data Structures and Algorithms

(133)

Elementary Data Structures

Stack

B A stack implements the LIFO (last-in, first-out) policy

= |ike a stack of plates, where you can either place
an extra plate at the top or remove the topmost plate

B For a stack,

= the insert operation is called Push
= and the delete operation is called Pop

Data Structures and Algorithms (134)

Elementary Data Structures

Where are Stacks used?

B A call stack that is used for the proper execution
of a computer program with subroutine or function calls

B Analysis of context free languages (e.g. properly nested brackets)
= Properly nested: (()(()())), Wrongly nested: (()((())

B Reversed Polish notation of terms
= Compute 2+ 3*5 = 2 Push 3 Push 5 * +

Data Structures and Algorithms (135)

Elementary Data Structures

Properties of a Stack

B Stacks can be defined by axioms based on the stack operations,
i.e. a certain data structure is a stack if the respective axioms hold

m For illustration some examples for such axioms - the “typical”
axioms are
(where S is a Stack which can hold elements x of some set X)

= [f not full(S): Pop(S) o (Push(S,x)) = x forall x € X
= If not empty(S): Push(S, Pop(S)) =S

Data Structures and Algorithms (136)

Elementary Data Structures

Typical Implementation of a Stack

B A typical implementation of a stack of size n
is based on an array S[1...n]
= S0 it can hold at most n elements

Push Po
B top(S) is the index of the most recently y P
inserted element l T
B The stack consists of elements
S[1 ... top(S)], where Top —

= S[1] is the element at the bottom of the stack,
= and S[top(S)] is the element at the top.

B The unused elements S[top(S)+1 ... n] S
are not in the stack

AN WA

Data Structures and Algorithms (137)

Elementary Data Structures

Stack

B If top(S) = 0 the stack is empty @ no element can be popped
B If top(S) = n the stack is full ® no further element can be pushed

Data Structures and Algorithms (138)

Elementary Data Structures

Example (Stack Manipulation)

Start with stack given,

denote changes of “stack state”

Push(S, 17)

Pop(S), Pop(S), Pop(S), Push(S, 5)
Pop(S), Pop(S)

Pop(S)

23

+«— top(S)

Data Structures and Algorithms

(139)

Elementary Data Structures

Top[S]=3

push(S,17)

2/,

23

R NN W ks~ 01O

Top=4

S:

¥/,

23

pop (S) =17
pop (S) =» 3
pop (S) =» 23

push(S,5)

TS

Top=2

R NN W ks~ o1 OO

4,

pop (S) == 5
pop (S) == 3

[A C I O R S & N e

S:

Top=0

R N W ks~ o1 o N

pop (S)

Error:
underflow

Data Structures and Algorithms

(140)

Elementary Data Structures

Pseudo Code for Stack Operations

B Number of elements

NumElements (S)
return top[S]

Data Structures and Algorithms (141)

Elementary Data Structures

Pseudo Code for Stack Operations

B Test for emptiness

Stack Empty(S)
1T top[S]=0
then return true
else return false

B Test for “stack full”

Stack Full (S)
1T top[S]=n
then return true
else return false

Data Structures and Algorithms

(142)

Elementary Data Structures

Pseudo Code for Stack Operations

B Pushing and Popping

This pseudo code contains

error handling functionality

Push(S, x)
iIT Stack Full(S)
then error "overflow"
else top[S] := top[S]+1
S[top[S]] = x

Pop(S)
iIT Stack Empty(S)
then error ""underflow"
else top[S] := top[S]-1
return S[top[S]+1]

Data Structures and Algorithms

(143)

Elementary Data Structures

Pseudo Code for Stack Operations

B (Asymptotic) Runtime

= NumElements:
number of operations independent of size n of stack
> constant » O(1)

= Stack Empty and Stack_Full:
number of operations independent of size n of stack
> constant © O(1)

= Push and Pop:
number of operations independent of size n of stack
2 constant 2 O(1)

Data Structures and Algorithms (144)

Elementary Data Structures

Queue

B A queue implements the FIFO (first-in, first-out) policy
= Like a line of people at the post office or in a shop

enqueue—>‘ ‘ ‘ ‘ ‘ ‘ ‘ — dequeue

! I

tail head

B For aqueue,

= the insert operation is called Enqueue
(=> place at the tail of the queue)

= and the delete operation is called Dequeue
(=> take from the head of the queue)

Data Structures and Algorithms

(145)

Elementary Data Structures

Where are Queues used?

B |n multi-tasking systems (communication, synchronization)
B In communication systems (store-and-forward networks)

B |n servicing systems (queue in front of the servicing unit)

B Queuing networks (performance evaluation of computer and
communication networks)

Data Structures and Algorithms (146)

Elementary Data Structures

Typical Implementation of a Queue

B A typical implementation of a queue consisting of at most n-1
elements is based on an array Q[1 ... n]

Hm Its attribute head(Q) points to the head of the queue.

B Its attribute tail(Q) points to the position
where a new element will be inserted into the queue
(i.e. one position behind the last element of the queue).

B The elements in the queue are in positions

head(Q), head(Q)+1, ..., tail(Q)-1, where we wrap around the array
boundary in the sense that Q[1] immediately follows Q[n]

Data Structures and Algorithms (147)

Elementary Data Structures

Example (1)

Q 1.1 2. | 3. (n = length (Q) = 10)
head(Q) tail(Q)

®m Insert a new element (4.)

1 2 3 4 &5 6 7 8 9 10

1 1
head(Q) tail(Q)

Data Structures and Algorithms (148)

Elementary Data Structures

Example (2)
1 2 3 4 &5 6 7 8 9 10
Q 1.12. 3. | 4
1)
B Insert one more element (5.) head(Q) tail(Q)

1 2 3 4 &5 6 7 8 9 10

Q 1.12.|13.| 4.]| 5.
+ +
tail(Q) head(Q)

® And again: Insert one more element (6.)

1 2 3 4 5 6 7 8 9 10
Q | 6. 1.1 2.13.| 4.| 5.

Data Structures and Algorithms (149)

Elementary Data Structures

Typical Implementation of a Queue

B Number of elements in queue

= |f tail > head:
NumElements(Q) = tail - head

= [ftail < head:
NumElements(Q) = tail — head + n

= |[ftail = head:
NumElements(Q) =0

= Initially: head[Q] = tail[Q] = 1

B Position of elements in queue

= The x. element of a queue Q (1 < x < NumElements(Q)
is mapped to array position

head(Q) + (x - 1) if x < n—head +1 (no wrap around)
head(Q) + (x-1)-n if x> n —head +1 (wrap around)

Data Structures and Algorithms (150)

Elementary Data Structures

Typical Implementation of a Queue

B Remark:

= A queue implemented by a n-element array
can hold at most n-1 elements

= otherwise we could not distinguish
between an empty and a full queue

B A queue Q is empty: (& NumElements(Q) = 0)
= jf head(Q) = tail(Q)
® A queue Q is full: (¢ NumElements(Q) = n-1)
= if head(Q) = (tail(Q) + 1) (head(Q) > tail(Q))

= jf head(Q) = (tail(Q) -n + 1) (head(Q) < tail(Q))

Data Structures and Algorithms (151)

Elementary Data Structures

Example (Queue Manipulation)

1 2 3 4 5 6 7 8 9 10
Q 4 (12| 4
head(Q) tail(Q)

Start with queue given, denote changes of “queue state”
B Enqueue(Q, 2), Enqueue(Q, 3), Enqueue(Q, 7)
B Dequeue(Q)

Data Structures and Algorithms

(152)

Elementary Data Structures

Queue Operations

B Enqueue and Dequeue

Enqueue(Q, %)
Qltarl[Q]] = x

then tainl[Q]
else tail[Q]

1T tarl[Q]=length|

Dequeue(Q)
x = Q[head[Q]]

iIT head[Q]=1ength[Q]

then head[Q]
else head[Q]
return X

This pseudo code does not contain
error handling functionality
(see stack push and pop)

Precondition: queue not full

tairl[Q]+1

Precondition: queue not empty

head[Q]+1

Data Structures and Algorithms (153)

Elementary Data Structures

Pseudo Code for Queue Operations

B (Asymptotic) Runtime

= Enqueue and Dequeue:
number of operations independent of size n of queue

& constant
> 0(1)

Data Structures and Algorithms (154)

Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(2)

Friedrich-Alexander- Ilnwersuat
Erlangen-Niirnberg =

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Elementary Data Structures

Typical Examples of Elementary Data Structures

Linked List
Tree

Data Structures and Algorithms (156)

Elementary Data Structures

Linked List

® Inalinked list, the elements are arranged in a linear order,
i.e. each element (except the first one) has a predecessor and
each element (except the last one) has a successor.

B Unlike an array, elements are not addressed by an index,
but by a pointer (a reference).

B There are singly linked lists and doubly linked lists.
m A list may be sorted or unsorted.

m A list may be circular (i.e. a ring of elements).

B Here we consider mainly unsorted, doubly linked lists

Data Structures and Algorithms (157)

Elementary Data Structures

Linked List

B Each element x of a (doubly) linked list has three fields
= A pointer prev to the previous element
= A pointer next to the next element
= Afield that contains a key (value of a certain type)
= Possibly a field that contains satellite data (ignored in the following)

prev key next
One element X : <[

: . «—
(consist of 3 fields)

®m Pointer fields that contain no pointer pointing to another element
contain the special pointer NIL (M)

B The pointer head[L] points to the first element of the linked list
®m If head[L] = NIL the list L is an empty list

Data Structures and Algorithms (158)

Elementary Data Structures

Linked List

® In alinked list, the insert operation is called List_Insert,
and the delete operation is called List_Delete.

® I|n alinked list we may search for an element with a certain key k
by calling List_Search.

Linked List Example: dynamic set {11, 2,7, 13}

prev. key next

N\ | e
head[L] —] /| 7 > 13| I

| v
N
A
v
B
[ERN
AN

A

Notice:
prev[head] = NIL and next[tail] = NIL

Data Structures and Algorithms (159)

Elementary Data Structures

Some Examples for the Use of Linked Lists

Lists of passengers of a plane or a hotel

Card games (sorting cards corresponding to a certain order, inserting

new cards into or removing cards out of the sequence)
To—do lists (containing entries for actions to be done)
Hash Lists (= Hashing, dealt later in this lecture)

Data Structures and Algorithms

(160)

Elementary Data Structures

Searching a Linked List

B The procedure List_search (L, k) finds the first element
with key Kk in list L and returns a pointer to that element.

® If no element with key k is found, the special pointer NIL is
returned.

List Search(L, k)
X -= head[L]
while x!=NIL and key[x]!=k do
X = next[x]
return X

B [t takes at most O(n) time to search a list of n objects
(linear search)

Data Structures and Algorithms (161)

Elementary Data Structures

Inserting into a Linked List

B The procedure List_insert(L,x) inserts a new element x
as the new head of list L

List_Insert(L,x)

next[x] := head[L]
1T head[L]!=NIL then
prev[head[L]] :
head[L] := X
prev[x] := NIL
X / key(x)] @
e
head[L] 2R, . el /

B The runtime for List_Insert on a list of length n is constant (O(1))

Data Structures and Algorithms

(162)

Elementary Data Structures

Deleting from a Linked List

B The procedure List Delete (L, x) removes an element x from the
linked list L, where the element is given by a pointer to x.

®m If you want to delete an element given by its key k, you have to
compute a pointer to this element (e.g. by using List_search(L, k))

List Delete(L,X)
1IT prev[x]!=NIL = X not the first element
then next|[prev[x]] := next[Xx]
else head[L] := next[Xx]
iIT next[x]!=NIL > X hot the last element
then prev[next[x]] := prev|[x]

Data Structures and Algorithms (163)

Elementary Data Structures

Deleting from a Linked List

List Delete(L,Xx)
a) 1T prev[x]!'=NIL
then next[prev[x]] := next[x]
b) else head[L] := next[x]
1T next[x]!'=NIL
then prev[next[x]] := prev[x]

N — .
a) head[L] »| ~ el —fe =134 /
X
N\

r

b) head[L] - T2l 4 /
— hRS"

Data Structures and Algorithms (164)

Elementary Data Structures

Deleting from a Linked List

B The runtime for List_Delete on a list of length n is constant (O(1))

m If you want to delete an element with a certain key, you must first
find that element by executing List_Search, which takes ©(n) time

in the worst case

Data Structures and Algorithms (165)

Elementary Data Structures

Inserting and deleting :

head[L] —»

/

1>
%_

List_insert (L,x) with key[x] =25 ?

13

%_

2

head[L] —

/

25

>
%_

11

13

List Delete (L,x) where x points to element with key[x] = 2 ?

head[L] —»>

/

25

>
<« 1

13

11

/

Data Structures and Algorithms

(166)

Elementary Data Structures

Tree

B Any data structure consisting of elements of the same type
can be represented with the help of pointers
(in a similar way as we implemented lists).

B Very important examples of such data structures are trees.

= Trees are graphs that contain no cycle:

every non-trivial path through a tree starting at a node and ending in
the same node, does traverse at least one edge at least twice.

B There exist many kinds of trees. Examples are:
= Binary trees
= Trees with unbounded branching
= Binary search trees
= Red-black trees

Data Structures and Algorithms (167)

Elementary Data Structures

Some Examples for the Use of Trees

B Systematically exploring various ways of proceeding
(e.g. in chess or planning games)

B Morse trees (coding trees)
Heaps (> heap sort)

M Search trees

Data Structures and Algorithms (168)

Elementary Data Structures

Tree

B A Dbinary tree consists of nodes with the following fields
= Akey field
= Possibly some satellite data (ignored in the following)

= Three pointers p, left and right pointing to the parent node, left child
node and right child node

B Be x an element (or node) of a tree
= |f p[x] = NIL = x represents the root node
= |f both left[x] = NIL and right[x] = NIL

2 x represents a leaf node

B For each tree T there is a pointer root[T] that points to the root of T
B If root[T] = NIL, the tree T is empty

Data Structures and Algorithms (169)

Elementary Data Structures

Binary Tree (Example)
root[T] —__

— o

key (+s.d.)
%/ k left | right

Ve

-

v avd ave

AN

AN

N

AN
\
Em

N

Data Structures and Algorithms (170)

Elementary Data Structures

P-nary Trees

m The above scheme can be extended to any class of trees where the
number of children is bounded by some constant k : child,,---,child, keN

= a bit of memory space may be wasted for pointers which are not actually used

Trees with unbounded branching

m Atree with unbounded branching
(if no upper bound on the number of a node's children is known a priori)
can be implemented by the following scheme:

= Each node has a key field (and possibly some satellite data),
= and three pointers p, left_child and right_sibling

= |n aleaf node, left_child=NIL
= If a node is the rightmost child of its parent, then right_sibling=NIL

Data Structures and Algorithms (171)

Elementary Data Structures

Unbounded Tree (Example)

7001 [T}

P

key (+s.d.)

|_child

r_sibl

Data Structures and Algorithms

(172)

Elementary Data Structures

Unbounded Tree (Example)

@ leaves

Data Structures and Algorithms (173)

