
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(1)

Data Structures and Algorithms (132)

Overview on simple data structures
for representing dynamic sets of data records

 Main operations on these data structures are
 Insertion and deletion of an element
 searching for an element
 finding the minimum or maximum element
 finding the successor or the predecessor of an element
 And similar operations …

 These data structures are often implemented
using dynamically allocated objects and pointers

Elementary Data Structures

Data Structures and Algorithms (133)

Typical Examples of Elementary Data Structures

 Array

 Stack
 Queue
 Linked List
 Tree

Elementary Data Structures

Data Structures and Algorithms (134)

Stack

 A stack implements the LIFO (last-in, first-out) policy
 like a stack of plates, where you can either place

an extra plate at the top or remove the topmost plate

 For a stack,
 the insert operation is called Push
 and the delete operation is called Pop

Elementary Data Structures

Data Structures and Algorithms (135)

Where are Stacks used?

 A call stack that is used for the proper execution
of a computer program with subroutine or function calls

 Analysis of context free languages (e.g. properly nested brackets)
 Properly nested: (()(()())), Wrongly nested: (()((())

 Reversed Polish notation of terms
 Compute 2 + 3*5 ⇨ 2 Push 3 Push 5 * +

Elementary Data Structures

Data Structures and Algorithms (136)

Properties of a Stack

 Stacks can be defined by axioms based on the stack operations,
i.e. a certain data structure is a stack if the respective axioms hold

 For illustration some examples for such axioms - the “typical”
axioms are
(where S is a Stack which can hold elements x of some set X)

 If not full(S): Pop(S) o (Push(S,x)) = x for all x ∊ X

 If not empty(S): Push(S, Pop(S)) = S

Elementary Data Structures

Data Structures and Algorithms (137)

Typical Implementation of a Stack

 A typical implementation of a stack of size n
is based on an array S[1…n]
⇨ so it can hold at most n elements

 top(S) is the index of the most recently
inserted element

 The stack consists of elements
S[1 … top(S)], where
 S[1] is the element at the bottom of the stack,
 and S[top(S)] is the element at the top.

 The unused elements S[top(S)+1 … n]
are not in the stack

Elementary Data Structures

S

Top

Push Pop

4
3
2
1

Data Structures and Algorithms (138)

Stack

 If top(S) = 0 the stack is empty ⇨ no element can be popped

 If top(S) = n the stack is full ⇨ no further element can be pushed

Elementary Data Structures

Data Structures and Algorithms (139)

Elementary Data Structures

Example (Stack Manipulation)

Start with stack given,
denote changes of “stack state”

 Push(S, 17)
 Pop(S), Pop(S), Pop(S), Push(S, 5)
 Pop(S), Pop(S)
 Pop(S)

S

1

2

3

4

5

6

7

3

3

23

top(S)

Data Structures and Algorithms (140)

Elementary Data Structures

S: S: S: S:
7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Top[S]=3

Top=4

Top=2

Top=0

3

3 3

3

2323 5

3

17

push(S,17)

pop (S) 17
pop (S) 3
pop (S) 23
push(S,5)

pop (S) 5
pop (S) 3 pop (S)

Error:
underflow

Data Structures and Algorithms (141)

Pseudo Code for Stack Operations

 Number of elements

Elementary Data Structures

NumElements (S)
return top[S]

Data Structures and Algorithms (142)

Pseudo Code for Stack Operations

 Test for emptiness

 Test for “stack full”

Elementary Data Structures

Stack_Empty(S)
if top[S]=0

then return true
else return false

Stack_Full (S)
if top[S]=n

then return true
else return false

Data Structures and Algorithms (143)

Pseudo Code for Stack Operations

 Pushing and Popping

Elementary Data Structures

Push(S,x)
if Stack_Full(S)

then error "overflow"
else top[S] := top[S]+1

S[top[S]] := x

Pop(S)
if Stack_Empty(S)

then error "underflow"
else top[S] := top[S]-1

return S[top[S]+1]

This pseudo code contains
error handling functionality

Data Structures and Algorithms (144)

Pseudo Code for Stack Operations

 (Asymptotic) Runtime
 NumElements:

number of operations independent of size n of stack
⇨ constant ⇨ O(1)

 Stack_Empty and Stack_Full:
number of operations independent of size n of stack
⇨ constant ⇨ O(1)

 Push and Pop:
number of operations independent of size n of stack
⇨ constant ⇨ O(1)

Elementary Data Structures

Data Structures and Algorithms (145)

Queue

 A queue implements the FIFO (first-in, first-out) policy
 Like a line of people at the post office or in a shop

 For a queue,
 the insert operation is called Enqueue

(=> place at the tail of the queue)

 and the delete operation is called Dequeue
(=> take from the head of the queue)

Elementary Data Structures

tail head

dequeueenqueue

Data Structures and Algorithms (146)

Where are Queues used?

 In multi-tasking systems (communication, synchronization)

 In communication systems (store-and-forward networks)

 In servicing systems (queue in front of the servicing unit)

 Queuing networks (performance evaluation of computer and
communication networks)

Elementary Data Structures

Data Structures and Algorithms (147)

Typical Implementation of a Queue

 A typical implementation of a queue consisting of at most n-1
elements is based on an array Q[1 … n]

 Its attribute head(Q) points to the head of the queue.
 Its attribute tail(Q) points to the position

where a new element will be inserted into the queue
(i.e. one position behind the last element of the queue).

 The elements in the queue are in positions
head(Q), head(Q)+1, …, tail(Q)-1, where we wrap around the array
boundary in the sense that Q[1] immediately follows Q[n]

Elementary Data Structures

Data Structures and Algorithms (148)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (1)

 Insert a new element (4.)

1. 2. 3. (n = length (Q) = 10)

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

1. 2. 3. 4.

Data Structures and Algorithms (149)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (2)

 Insert one more element (5.)

 And again: Insert one more element (6.)

1. 2. 3. 4.

Q
1 2 3 4 5 6 7 8 9 10

head(Q)tail(Q)

1. 2. 3. 4. 5.

Q
1 2 3 4 5 6 7 8 9 10

head(Q)tail(Q)

1. 2. 3. 4. 5.6.

Data Structures and Algorithms (150)

Elementary Data Structures

Typical Implementation of a Queue

 Number of elements in queue
 If tail > head:

NumElements(Q) = tail - head
 If tail < head:

NumElements(Q) = tail – head + n
 If tail = head:

NumElements(Q) = 0
 Initially: head[Q] = tail[Q] = 1

 Position of elements in queue
 The x. element of a queue Q (1 ≤ x ≤ NumElements(Q)

is mapped to array position

head(Q) + (x - 1) if x ≤ n – head +1 (no wrap around)
head(Q) + (x - 1) - n if x > n – head +1 (wrap around)

Data Structures and Algorithms (151)

Elementary Data Structures

Typical Implementation of a Queue

 Remark:
 A queue implemented by a n-element array

can hold at most n-1 elements
 otherwise we could not distinguish

between an empty and a full queue

 A queue Q is empty: (⇔ NumElements(Q) = 0)
 if head(Q) = tail(Q)

 A queue Q is full: (⇔ NumElements(Q) = n-1)
 if head(Q) = (tail(Q) + 1) (head(Q) > tail(Q))
 if head(Q) = (tail(Q) - n + 1) (head(Q) < tail(Q))

Data Structures and Algorithms (152)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (Queue Manipulation)

Start with queue given, denote changes of “queue state”
 Enqueue(Q, 2), Enqueue(Q, 3), Enqueue(Q, 7)
 Dequeue(Q)

4 12 4

Data Structures and Algorithms (153)

Queue Operations

 Enqueue and Dequeue

Elementary Data Structures

Enqueue(Q,x)
Q[tail[Q]] := x
if tail[Q]=length[Q]

then tail[Q] := 1
else tail[Q] := tail[Q]+1

Dequeue(Q)
x := Q[head[Q]]
if head[Q]=length[Q]

then head[Q] := 1
else head[Q] := head[Q]+1

return x

Precondition: queue not full

Precondition: queue not empty

This pseudo code does not contain
error handling functionality
(see stack push and pop)

Data Structures and Algorithms (154)

Pseudo Code for Queue Operations

 (Asymptotic) Runtime
 Enqueue and Dequeue:

number of operations independent of size n of queue
⇨ constant
⇨ O(1)

Elementary Data Structures

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(2)

Data Structures and Algorithms (156)

Typical Examples of Elementary Data Structures

 Array

 Stack
 Queue
 Linked List
 Tree

Elementary Data Structures

Data Structures and Algorithms (157)

Linked List

 In a linked list, the elements are arranged in a linear order,
i.e. each element (except the first one) has a predecessor and
each element (except the last one) has a successor.

 Unlike an array, elements are not addressed by an index,
but by a pointer (a reference).

 There are singly linked lists and doubly linked lists.
 A list may be sorted or unsorted.
 A list may be circular (i.e. a ring of elements).

 Here we consider mainly unsorted, doubly linked lists

Elementary Data Structures

Data Structures and Algorithms (158)

Linked List

 Each element x of a (doubly) linked list has three fields
 A pointer prev to the previous element
 A pointer next to the next element
 A field that contains a key (value of a certain type)
 Possibly a field that contains satellite data (ignored in the following)

 Pointer fields that contain no pointer pointing to another element
contain the special pointer NIL (∖)

 The pointer head[L] points to the first element of the linked list
 If head[L] = NIL the list L is an empty list

Elementary Data Structures

prev key next
One element x :
(consist of 3 fields)

Data Structures and Algorithms (159)

Linked List

 In a linked list, the insert operation is called List_Insert,
and the delete operation is called List_Delete.

 In a linked list we may search for an element with a certain key k
by calling List_Search.

Elementary Data Structures

Linked List Example: dynamic set {11, 2 ,7 , 13}

head[L] 117 13 2

prev key next

Notice:

prev[head] = NIL and next[tail] = NIL

Data Structures and Algorithms (160)

Some Examples for the Use of Linked Lists

 Lists of passengers of a plane or a hotel
 Card games (sorting cards corresponding to a certain order, inserting

new cards into or removing cards out of the sequence)

 To-do lists (containing entries for actions to be done)

 Hash Lists (⇨ Hashing, dealt later in this lecture)

Elementary Data Structures

Data Structures and Algorithms (161)

Searching a Linked List

 The procedure List_search (L, k) finds the first element
with key k in list L and returns a pointer to that element.

 If no element with key k is found, the special pointer NIL is
returned.

 It takes at most Θ(n) time to search a list of n objects

(linear search)

Elementary Data Structures

List_Search(L,k)
x := head[L]
while x!=NIL and key[x]!=k do

x := next[x]
return x

Data Structures and Algorithms (162)

Inserting into a Linked List

 The procedure List_insert(L,x) inserts a new element x
as the new head of list L

 The runtime for List_Insert on a list of length n is constant (O(1))

Elementary Data Structures

head[L]

List_Insert(L,x)
next[x] := head[L]
if head[L]!=NIL then

prev[head[L]] := x
head[L] := x
prev[x] := NIL

x key(x)

Data Structures and Algorithms (163)

Deleting from a Linked List

 The procedure List_Delete (L, x) removes an element x from the
linked list L, where the element is given by a pointer to x.

 If you want to delete an element given by its key k, you have to
compute a pointer to this element (e.g. by using List_search(L, k))

Elementary Data Structures

List_Delete(L,x)
if prev[x]!=NIL

then next[prev[x]] := next[x]
else head[L] := next[x]

if next[x]!=NIL
then prev[next[x]] := prev[x]

⇨ x not the first element

⇨ x not the last element

Data Structures and Algorithms (164)

Deleting from a Linked List

Elementary Data Structures

List_Delete(L,x)
if prev[x]!=NIL

then next[prev[x]] := next[x]
else head[L] := next[x]

if next[x]!=NIL
then prev[next[x]] := prev[x]

head[L]

head[L]

a)

b)

a)

b)

 x

 x

Data Structures and Algorithms (165)

Deleting from a Linked List

 The runtime for List_Delete on a list of length n is constant (O(1))

 If you want to delete an element with a certain key, you must first
find that element by executing List_Search, which takes Θ(n) time
in the worst case

Elementary Data Structures

Data Structures and Algorithms (166)

Elementary Data Structures

117 13 2head[L]

List_insert (L,x) with key[x] = 25

1125 7 13head[L]

11head[L]

2

List_Delete (L,x) where x points to element with key[x] = 2

25 7 13

Inserting and deleting :

Data Structures and Algorithms (167)

Tree

 Any data structure consisting of elements of the same type
can be represented with the help of pointers
(in a similar way as we implemented lists).

 Very important examples of such data structures are trees.
 Trees are graphs that contain no cycle:

every non-trivial path through a tree starting at a node and ending in
the same node, does traverse at least one edge at least twice.

 There exist many kinds of trees. Examples are:
 Binary trees
 Trees with unbounded branching
 Binary search trees
 Red-black trees

Elementary Data Structures

Data Structures and Algorithms (168)

Some Examples for the Use of Trees

 Systematically exploring various ways of proceeding
(e.g. in chess or planning games)

 Morse trees (coding trees)

 Heaps (⇨ heap sort)

 Search trees

Elementary Data Structures

Data Structures and Algorithms (169)

Tree

 A binary tree consists of nodes with the following fields
 A key field
 Possibly some satellite data (ignored in the following)
 Three pointers p, left and right pointing to the parent node, left child

node and right child node
 Be x an element (or node) of a tree

 If p[x] = NIL ⇨ x represents the root node

 If both left[x] = NIL and right[x] = NIL
⇨ x represents a leaf node

 For each tree T there is a pointer root[T] that points to the root of T

 If root[T] = NIL, the tree T is empty

Elementary Data Structures

Data Structures and Algorithms (170)

Binary Tree (Example)

Elementary Data Structures

p

rightleft

key (+ s.d.)

Data Structures and Algorithms (171)

P-nary Trees

 The above scheme can be extended to any class of trees where the
number of children is bounded by some constant
 a bit of memory space may be wasted for pointers which are not actually used

Trees with unbounded branching

 A tree with unbounded branching
(if no upper bound on the number of a node's children is known a priori)
can be implemented by the following scheme:
 Each node has a key field (and possibly some satellite data),
 and three pointers p, left_child and right_sibling

 In a leaf node, left_child=NIL
 If a node is the rightmost child of its parent, then right_sibling=NIL

Elementary Data Structures

kchildchildk k,,: 1

Data Structures and Algorithms (172)

Unbounded Tree (Example)

Elementary Data Structures

p

r_sibll_child

key (+ s.d.)

Data Structures and Algorithms (173)

Unbounded Tree (Example)

Elementary Data Structures

leaves

