
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(1)

Data Structures and Algorithms (132)

Overview on simple data structures
for representing dynamic sets of data records

 Main operations on these data structures are
 Insertion and deletion of an element
 searching for an element
 finding the minimum or maximum element
 finding the successor or the predecessor of an element
 And similar operations …

 These data structures are often implemented
using dynamically allocated objects and pointers

Elementary Data Structures

Data Structures and Algorithms (133)

Typical Examples of Elementary Data Structures

 Array

 Stack
 Queue
 Linked List
 Tree

Elementary Data Structures

Data Structures and Algorithms (134)

Stack

 A stack implements the LIFO (last-in, first-out) policy
 like a stack of plates, where you can either place

an extra plate at the top or remove the topmost plate

 For a stack,
 the insert operation is called Push
 and the delete operation is called Pop

Elementary Data Structures

Data Structures and Algorithms (135)

Where are Stacks used?

 A call stack that is used for the proper execution
of a computer program with subroutine or function calls

 Analysis of context free languages (e.g. properly nested brackets)
 Properly nested: (()(()())), Wrongly nested: (()((())

 Reversed Polish notation of terms
 Compute 2 + 3*5 ⇨ 2 Push 3 Push 5 * +

Elementary Data Structures

Data Structures and Algorithms (136)

Properties of a Stack

 Stacks can be defined by axioms based on the stack operations,
i.e. a certain data structure is a stack if the respective axioms hold

 For illustration some examples for such axioms - the “typical”
axioms are
(where S is a Stack which can hold elements x of some set X)

 If not full(S): Pop(S) o (Push(S,x)) = x for all x ∊ X

 If not empty(S): Push(S, Pop(S)) = S

Elementary Data Structures

Data Structures and Algorithms (137)

Typical Implementation of a Stack

 A typical implementation of a stack of size n
is based on an array S[1…n]
⇨ so it can hold at most n elements

 top(S) is the index of the most recently
inserted element

 The stack consists of elements
S[1 … top(S)], where
 S[1] is the element at the bottom of the stack,
 and S[top(S)] is the element at the top.

 The unused elements S[top(S)+1 … n]
are not in the stack

Elementary Data Structures

S

Top

Push Pop

4
3
2
1

Data Structures and Algorithms (138)

Stack

 If top(S) = 0 the stack is empty ⇨ no element can be popped

 If top(S) = n the stack is full ⇨ no further element can be pushed

Elementary Data Structures

Data Structures and Algorithms (139)

Elementary Data Structures

Example (Stack Manipulation)

Start with stack given,
denote changes of “stack state”

 Push(S, 17)
 Pop(S), Pop(S), Pop(S), Push(S, 5)
 Pop(S), Pop(S)
 Pop(S)

S

1

2

3

4

5

6

7

3

3

23

top(S)

Data Structures and Algorithms (140)

Elementary Data Structures

S: S: S: S:
7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Top[S]=3

Top=4

Top=2

Top=0

3

3 3

3

2323 5

3

17

push(S,17)

pop (S) 17
pop (S) 3
pop (S) 23
push(S,5)

pop (S) 5
pop (S) 3 pop (S)

Error:
underflow

Data Structures and Algorithms (141)

Pseudo Code for Stack Operations

 Number of elements

Elementary Data Structures

NumElements (S)
return top[S]

Data Structures and Algorithms (142)

Pseudo Code for Stack Operations

 Test for emptiness

 Test for “stack full”

Elementary Data Structures

Stack_Empty(S)
if top[S]=0

then return true
else return false

Stack_Full (S)
if top[S]=n

then return true
else return false

Data Structures and Algorithms (143)

Pseudo Code for Stack Operations

 Pushing and Popping

Elementary Data Structures

Push(S,x)
if Stack_Full(S)

then error "overflow"
else top[S] := top[S]+1

S[top[S]] := x

Pop(S)
if Stack_Empty(S)

then error "underflow"
else top[S] := top[S]-1

return S[top[S]+1]

This pseudo code contains
error handling functionality

Data Structures and Algorithms (144)

Pseudo Code for Stack Operations

 (Asymptotic) Runtime
 NumElements:

number of operations independent of size n of stack
⇨ constant ⇨ O(1)

 Stack_Empty and Stack_Full:
number of operations independent of size n of stack
⇨ constant ⇨ O(1)

 Push and Pop:
number of operations independent of size n of stack
⇨ constant ⇨ O(1)

Elementary Data Structures

Data Structures and Algorithms (145)

Queue

 A queue implements the FIFO (first-in, first-out) policy
 Like a line of people at the post office or in a shop

 For a queue,
 the insert operation is called Enqueue

(=> place at the tail of the queue)

 and the delete operation is called Dequeue
(=> take from the head of the queue)

Elementary Data Structures

tail head

dequeueenqueue

Data Structures and Algorithms (146)

Where are Queues used?

 In multi-tasking systems (communication, synchronization)

 In communication systems (store-and-forward networks)

 In servicing systems (queue in front of the servicing unit)

 Queuing networks (performance evaluation of computer and
communication networks)

Elementary Data Structures

Data Structures and Algorithms (147)

Typical Implementation of a Queue

 A typical implementation of a queue consisting of at most n-1
elements is based on an array Q[1 … n]

 Its attribute head(Q) points to the head of the queue.
 Its attribute tail(Q) points to the position

where a new element will be inserted into the queue
(i.e. one position behind the last element of the queue).

 The elements in the queue are in positions
head(Q), head(Q)+1, …, tail(Q)-1, where we wrap around the array
boundary in the sense that Q[1] immediately follows Q[n]

Elementary Data Structures

Data Structures and Algorithms (148)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (1)

 Insert a new element (4.)

1. 2. 3. (n = length (Q) = 10)

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

1. 2. 3. 4.

Data Structures and Algorithms (149)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (2)

 Insert one more element (5.)

 And again: Insert one more element (6.)

1. 2. 3. 4.

Q
1 2 3 4 5 6 7 8 9 10

head(Q)tail(Q)

1. 2. 3. 4. 5.

Q
1 2 3 4 5 6 7 8 9 10

head(Q)tail(Q)

1. 2. 3. 4. 5.6.

Data Structures and Algorithms (150)

Elementary Data Structures

Typical Implementation of a Queue

 Number of elements in queue
 If tail > head:

NumElements(Q) = tail - head
 If tail < head:

NumElements(Q) = tail – head + n
 If tail = head:

NumElements(Q) = 0
 Initially: head[Q] = tail[Q] = 1

 Position of elements in queue
 The x. element of a queue Q (1 ≤ x ≤ NumElements(Q)

is mapped to array position

head(Q) + (x - 1) if x ≤ n – head +1 (no wrap around)
head(Q) + (x - 1) - n if x > n – head +1 (wrap around)

Data Structures and Algorithms (151)

Elementary Data Structures

Typical Implementation of a Queue

 Remark:
 A queue implemented by a n-element array

can hold at most n-1 elements
 otherwise we could not distinguish

between an empty and a full queue

 A queue Q is empty: (⇔ NumElements(Q) = 0)
 if head(Q) = tail(Q)

 A queue Q is full: (⇔ NumElements(Q) = n-1)
 if head(Q) = (tail(Q) + 1) (head(Q) > tail(Q))
 if head(Q) = (tail(Q) - n + 1) (head(Q) < tail(Q))

Data Structures and Algorithms (152)

Elementary Data Structures

Q
1 2 3 4 5 6 7 8 9 10

head(Q) tail(Q)

Example (Queue Manipulation)

Start with queue given, denote changes of “queue state”
 Enqueue(Q, 2), Enqueue(Q, 3), Enqueue(Q, 7)
 Dequeue(Q)

4 12 4

Data Structures and Algorithms (153)

Queue Operations

 Enqueue and Dequeue

Elementary Data Structures

Enqueue(Q,x)
Q[tail[Q]] := x
if tail[Q]=length[Q]

then tail[Q] := 1
else tail[Q] := tail[Q]+1

Dequeue(Q)
x := Q[head[Q]]
if head[Q]=length[Q]

then head[Q] := 1
else head[Q] := head[Q]+1

return x

Precondition: queue not full

Precondition: queue not empty

This pseudo code does not contain
error handling functionality
(see stack push and pop)

Data Structures and Algorithms (154)

Pseudo Code for Queue Operations

 (Asymptotic) Runtime
 Enqueue and Dequeue:

number of operations independent of size n of queue
⇨ constant
⇨ O(1)

Elementary Data Structures

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Elementary Data Structures(2)

Data Structures and Algorithms (156)

Typical Examples of Elementary Data Structures

 Array

 Stack
 Queue
 Linked List
 Tree

Elementary Data Structures

Data Structures and Algorithms (157)

Linked List

 In a linked list, the elements are arranged in a linear order,
i.e. each element (except the first one) has a predecessor and
each element (except the last one) has a successor.

 Unlike an array, elements are not addressed by an index,
but by a pointer (a reference).

 There are singly linked lists and doubly linked lists.
 A list may be sorted or unsorted.
 A list may be circular (i.e. a ring of elements).

 Here we consider mainly unsorted, doubly linked lists

Elementary Data Structures

Data Structures and Algorithms (158)

Linked List

 Each element x of a (doubly) linked list has three fields
 A pointer prev to the previous element
 A pointer next to the next element
 A field that contains a key (value of a certain type)
 Possibly a field that contains satellite data (ignored in the following)

 Pointer fields that contain no pointer pointing to another element
contain the special pointer NIL (∖)

 The pointer head[L] points to the first element of the linked list
 If head[L] = NIL the list L is an empty list

Elementary Data Structures

prev key next
One element x :
(consist of 3 fields)

Data Structures and Algorithms (159)

Linked List

 In a linked list, the insert operation is called List_Insert,
and the delete operation is called List_Delete.

 In a linked list we may search for an element with a certain key k
by calling List_Search.

Elementary Data Structures

Linked List Example: dynamic set {11, 2 ,7 , 13}

head[L] 117 13 2

prev key next

Notice:

prev[head] = NIL and next[tail] = NIL

Data Structures and Algorithms (160)

Some Examples for the Use of Linked Lists

 Lists of passengers of a plane or a hotel
 Card games (sorting cards corresponding to a certain order, inserting

new cards into or removing cards out of the sequence)

 To-do lists (containing entries for actions to be done)

 Hash Lists (⇨ Hashing, dealt later in this lecture)

Elementary Data Structures

Data Structures and Algorithms (161)

Searching a Linked List

 The procedure List_search (L, k) finds the first element
with key k in list L and returns a pointer to that element.

 If no element with key k is found, the special pointer NIL is
returned.

 It takes at most Θ(n) time to search a list of n objects

(linear search)

Elementary Data Structures

List_Search(L,k)
x := head[L]
while x!=NIL and key[x]!=k do

x := next[x]
return x

Data Structures and Algorithms (162)

Inserting into a Linked List

 The procedure List_insert(L,x) inserts a new element x
as the new head of list L

 The runtime for List_Insert on a list of length n is constant (O(1))

Elementary Data Structures

head[L]

List_Insert(L,x)
next[x] := head[L]
if head[L]!=NIL then

prev[head[L]] := x
head[L] := x
prev[x] := NIL

x key(x)

Data Structures and Algorithms (163)

Deleting from a Linked List

 The procedure List_Delete (L, x) removes an element x from the
linked list L, where the element is given by a pointer to x.

 If you want to delete an element given by its key k, you have to
compute a pointer to this element (e.g. by using List_search(L, k))

Elementary Data Structures

List_Delete(L,x)
if prev[x]!=NIL

then next[prev[x]] := next[x]
else head[L] := next[x]

if next[x]!=NIL
then prev[next[x]] := prev[x]

⇨ x not the first element

⇨ x not the last element

Data Structures and Algorithms (164)

Deleting from a Linked List

Elementary Data Structures

List_Delete(L,x)
if prev[x]!=NIL

then next[prev[x]] := next[x]
else head[L] := next[x]

if next[x]!=NIL
then prev[next[x]] := prev[x]

head[L]

head[L]

a)

b)

a)

b)

 x

 x

Data Structures and Algorithms (165)

Deleting from a Linked List

 The runtime for List_Delete on a list of length n is constant (O(1))

 If you want to delete an element with a certain key, you must first
find that element by executing List_Search, which takes Θ(n) time
in the worst case

Elementary Data Structures

Data Structures and Algorithms (166)

Elementary Data Structures

117 13 2head[L]

List_insert (L,x) with key[x] = 25

1125 7 13head[L]

11head[L]

2

List_Delete (L,x) where x points to element with key[x] = 2

25 7 13

Inserting and deleting :

Data Structures and Algorithms (167)

Tree

 Any data structure consisting of elements of the same type
can be represented with the help of pointers
(in a similar way as we implemented lists).

 Very important examples of such data structures are trees.
 Trees are graphs that contain no cycle:

every non-trivial path through a tree starting at a node and ending in
the same node, does traverse at least one edge at least twice.

 There exist many kinds of trees. Examples are:
 Binary trees
 Trees with unbounded branching
 Binary search trees
 Red-black trees

Elementary Data Structures

Data Structures and Algorithms (168)

Some Examples for the Use of Trees

 Systematically exploring various ways of proceeding
(e.g. in chess or planning games)

 Morse trees (coding trees)

 Heaps (⇨ heap sort)

 Search trees

Elementary Data Structures

Data Structures and Algorithms (169)

Tree

 A binary tree consists of nodes with the following fields
 A key field
 Possibly some satellite data (ignored in the following)
 Three pointers p, left and right pointing to the parent node, left child

node and right child node
 Be x an element (or node) of a tree

 If p[x] = NIL ⇨ x represents the root node

 If both left[x] = NIL and right[x] = NIL
⇨ x represents a leaf node

 For each tree T there is a pointer root[T] that points to the root of T

 If root[T] = NIL, the tree T is empty

Elementary Data Structures

Data Structures and Algorithms (170)

Binary Tree (Example)

Elementary Data Structures

p

rightleft

key (+ s.d.)

Data Structures and Algorithms (171)

P-nary Trees

 The above scheme can be extended to any class of trees where the
number of children is bounded by some constant
 a bit of memory space may be wasted for pointers which are not actually used

Trees with unbounded branching

 A tree with unbounded branching
(if no upper bound on the number of a node's children is known a priori)
can be implemented by the following scheme:
 Each node has a key field (and possibly some satellite data),
 and three pointers p, left_child and right_sibling

 In a leaf node, left_child=NIL
 If a node is the rightmost child of its parent, then right_sibling=NIL

Elementary Data Structures

kchildchildk k,,: 1 

Data Structures and Algorithms (172)

Unbounded Tree (Example)

Elementary Data Structures

p

r_sibll_child

key (+ s.d.)

Data Structures and Algorithms (173)

Unbounded Tree (Example)

Elementary Data Structures

leaves

